Back

Smart surfaces for tissue engineering

This project explores how extracellular environments influence cell behavior in the context of tissue engineering.

It combines the development of stimuli-responsive thermoplasmonic hydrogels and nanoparticle-based surfaces that can be tuned for stiffness and topography. 

This integrated approach aims to study how physical cues in real-time affect cell mechanics, differentiation and nanoparticle internalization. By investigating the interplay between material properties and cellular responses, this work seeks to build connections between cell biology and bionanomaterial design, ultimately advancing therapeutic strategies in regenerative medicine and enhancing the understanding of tissue dynamics and nanoparticle interactions. 

Funding source: 

National Center of Competence in Research (NCCR) Bio-inspired Materialshttps://www.bioinspired-materials.ch/en/research/module-3/project.html?projectid=139 

Related publications: 

Understanding Macrophage Interaction with Antimony-Doped Tin Oxide Plasmonic Nanoparticles
Balitskii, O., Ivasiv, V., Porteiro-Figueiras, M., Yajan, P., Witzig, M., Moreno-Echeverri, A. M., Muñetón Díaz, J., Rothen-Rutishauser, B., Petri-Fink, A., & Keshavan, S.
Cells (2024)

Dynamic and biocompatible thermo-responsive magnetic hydrogels that respond to an alternating magnetic field 
Crippa Federica, Moore Thomas L., Mortato Mariangela, Geers Christoph, Haeni Laetitia, Hirt Ann M., Rothen-Rutishauser Barbara, Petri-Fink Alke 
Journal of Magnetism and Magnetic Materials (2017) 

Magneto-responsive Cell Culture Substrates that can be Modulated in situ 
Crippa Federica, Rothen-Rutishauser Barbara, Petri-Fink Alke 
CHIMIA International Journal for Chemistry (2019) 

Particle surfaces to study macrophage adherence, migration, and clearance 
Septiadi Dedy, Lee Aaron, SpuchCalvar Miguel, Moore Thomas Lee, Spiaggia Giovanni, Abdussalam Wildan, RodriguezLorenzo Laura, TaladrizBlanco Patricia, RothenRutishauser Barbara, PetriFink Alke 
Advanced Functional Materials (2020) 

Particle Stiffness and Surface Topography Determine MacrophageMediated Removal of Surface Adsorbed Particles 
Lee Aaron, Septiadi Dedy, TaladrizBlanco Patricia, Almeida Mauro, Haeni Laetitia, SpuchCalvar Miguel, Abdussalam Wildan, RothenRutishauser Barbara, PetriFink Alke 
Advanced Healthcare Materials (2021) 

Aligned and Oriented Collagen Nanocomposite Fibers as Substrates to Activate Fibroblasts 
Spiaggia Giovanni, Taladriz-Blanco Patricia, Septiadi Dedy, Ortuso Roberto Diego, Lee Aaron, Trappe Veronique, Rothen-Rutishauser Barbara, Petri-Fink Alke 
ACS Applied Bio Materials (2021) 

A Near-Infrared Mechanically Switchable Elastomeric Film as a Dynamic Cell Culture Substrate 
Spiaggia Giovanni, Taladriz-Blanco Patricia, Hengsberger Stefan, Septiadi Dedy, Geers Christoph, Lee Aaron, Rothen-Rutishauser Barbara, Petri-Fink Alke 
Biomedicines (2022) 

Substrate stiffness reduces particle uptake by epithelial cells and macrophages in a size-dependent manner through mechanoregulation 
Lee Aaron, Sousa de Almeida Mauro, Milinkovic Daela, Septiadi Dedy, Taladriz-Blanco Patricia, Loussert-Fonta Céline, Balog Sandor, Bazzoni Amelie, Rothen-Rutishauser Barbara, Petri-Fink Alke 
Nanoscale (2022) 

The Effect of Substrate Properties on Cellular Behavior and Nanoparticle Uptake in Human Fibroblasts and Epithelial Cells 
Sousa de Almeida Mauro, Lee Aaron, Itel Fabian, Maniura-Weber Katharina, Petri-Fink Alke, Rothen-Rutishauser Barbara 
Nanomaterials (2024) 

 

Main investigator

Involved people